Parallelized Context Modeling for Faster Image Coding

A. Burakhan Koyuncu, Kai Cui, Atanas Boev, Eckehard Steinbach

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

Learning-based image compression has reached the performance of classical methods such as BPG. One common approach is to use an autoencoder network to map the pixel information to a latent space and then approximate the symbol probabilities in that space with a context model. During inference, the learned context model provides symbol probabilities, which are used by the entropy encoder to obtain the bitstream. Currently, the most effective context models use autoregression, but autoregression results in a very high decoding complexity due to the serialized data processing. In this work, we propose a method to parallelize the autoregressive process used for image compression. In our experiments, we achieve a decoding speed that is over 8 times faster than the standard autoregressive context model almost without compression performance reduction.

OriginalspracheEnglisch
Titel2021 International Conference on Visual Communications and Image Processing, VCIP 2021 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781728185514
DOIs
PublikationsstatusVeröffentlicht - 2021
Veranstaltung2021 International Conference on Visual Communications and Image Processing, VCIP 2021 - Munich, Deutschland
Dauer: 5 Dez. 20218 Dez. 2021

Publikationsreihe

Name2021 International Conference on Visual Communications and Image Processing, VCIP 2021 - Proceedings

Konferenz

Konferenz2021 International Conference on Visual Communications and Image Processing, VCIP 2021
Land/GebietDeutschland
OrtMunich
Zeitraum5/12/218/12/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Parallelized Context Modeling for Faster Image Coding“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren