P-TA: Using Proximal Policy Optimization to Enhance Tabular Data Augmentation via Large Language Models

Shuo Yang, Chenchen Yuan, Yao Rong, Felix Steinbauer, Gjergji Kasneci

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

A multitude of industries depend on accurate and reasonable tabular data augmentation for their business processes. Contemporary methodologies in generating tabular data revolve around utilizing Generative Adversarial Networks (GAN) or fine-tuning Large Language Models (LLM). However, GAN-based approaches are documented to produce samples with common-sense errors attributed to the absence of external knowledge. On the other hand, LLM-based methods exhibit a limited capacity to capture the disparities between synthesized and actual data distribution due to the absence of feedback from a discriminator during training. Furthermore, the decoding of LLM-based generation introduces gradient breakpoints, impeding the backpropagation of loss from a discriminator, thereby complicating the integration of these two approaches. To solve this challenge, we propose using proximal policy optimization (PPO) to apply GANs, guiding LLMs to enhance the probability distribution of tabular features. This approach enables the utilization of LLMs as generators for GANs in synthesizing tabular data. Our experiments demonstrate that PPO leads to an approximately 4% improvement in the accuracy of models trained on synthetically generated data over state-of-the-art across three real-world datasets.

OriginalspracheEnglisch
Titel62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Proceedings of the Conference
Redakteure/-innenLun-Wei Ku, Andre Martins, Vivek Srikumar
Herausgeber (Verlag)Association for Computational Linguistics (ACL)
Seiten248-264
Seitenumfang17
ISBN (elektronisch)9798891760998
PublikationsstatusVeröffentlicht - 2024
VeranstaltungFindings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Hybrid, Bangkok, Thailand
Dauer: 11 Aug. 202416 Aug. 2024

Publikationsreihe

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
ISSN (Print)0736-587X

Konferenz

KonferenzFindings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
Land/GebietThailand
OrtHybrid, Bangkok
Zeitraum11/08/2416/08/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „P-TA: Using Proximal Policy Optimization to Enhance Tabular Data Augmentation via Large Language Models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren