Out-of-Distribution Detection for Adaptive Computer Vision

Simon Kristoffersson Lind, Rudolph Triebel, Luigi Nardi, Volker Krueger

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

It is well known that computer vision can be unreliable when faced with previously unseen imaging conditions. This paper proposes a method to adapt camera parameters according to a normalizing flow-based out-of-distibution detector. A small-scale study is conducted which shows that adapting camera parameters according to this out-of-distibution detector leads to an average increase of 3 to 4% points in mAP, mAR and F1 performance metrics of a YOLOv4 object detector. As a secondary result, this paper also shows that it is possible to train a normalizing flow model for out-of-distribution detection on the COCO dataset, which is larger and more diverse than most benchmarks for out-of-distibution detectors.

OriginalspracheEnglisch
TitelImage Analysis - 23rd Scandinavian Conference, SCIA 2023, Proceedings
Redakteure/-innenRikke Gade, Michael Felsberg, Joni-Kristian Kämäräinen
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten311-325
Seitenumfang15
ISBN (Print)9783031314377
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung23nd Scandinavian Conference on Image Analysis, SCIA 2023 - Lapland, Finnland
Dauer: 18 Apr. 202321 Apr. 2023

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band13886 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz23nd Scandinavian Conference on Image Analysis, SCIA 2023
Land/GebietFinnland
OrtLapland
Zeitraum18/04/2321/04/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Out-of-Distribution Detection for Adaptive Computer Vision“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren