Orchestrated Co-scheduling, Resource Partitioning, and Power Capping on CPU-GPU Heterogeneous Systems via Machine Learning

Issa Saba, Eishi Arima, Dai Liu, Martin Schulz

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

CPU-GPU heterogeneous architectures are now commonly used in a wide variety of computing systems from mobile devices to supercomputers. Maximizing the throughput for multi-programmed workloads on such systems is indispensable as one single program typically cannot fully exploit all avaiable resources. At the same time, power consumption is a key issue and often requires optimizing power allocations to the CPU and GPU while enforcing a total power constraint, in particular when the power/thermal requirements are strict. The result is a system-wide optimization problem with several knobs. In particular we focus on (1) co-scheduling decisions, i.e., selecting programs to co-locate in a space sharing manner; (2) resource partitioning on both CPUs and GPUs; and (3) power capping on both CPUs and GPUs. We solve this problem using predictive performance modeling using machine learning in order to coordinately optimize the above knob setups. Our experiential results using a real system show that our approach achieves up to 67% of speedup compared to a time-sharing-based scheduling with a naive power capping that evenly distributes power budgets across components.

OriginalspracheEnglisch
TitelArchitecture of Computing Systems - 35th International Conference, ARCS 2022, Proceedings
Redakteure/-innenMartin Schulz, Carsten Trinitis, Nikela Papadopoulou, Thilo Pionteck
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten51-67
Seitenumfang17
ISBN (Print)9783031218668
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung35th International Conference on Architecture of Computing Systems, ARCS 2022 - Heilbronn, Deutschland
Dauer: 13 Sept. 202215 Sept. 2022

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band13642 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz35th International Conference on Architecture of Computing Systems, ARCS 2022
Land/GebietDeutschland
OrtHeilbronn
Zeitraum13/09/2215/09/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Orchestrated Co-scheduling, Resource Partitioning, and Power Capping on CPU-GPU Heterogeneous Systems via Machine Learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren