ORB5: A global electromagnetic gyrokinetic code using the PIC approach in toroidal geometry

E. Lanti, N. Ohana, N. Tronko, T. Hayward-Schneider, A. Bottino, B. F. McMillan, A. Mishchenko, A. Scheinberg, A. Biancalani, P. Angelino, S. Brunner, J. Dominski, P. Donnel, C. Gheller, R. Hatzky, A. Jocksch, S. Jolliet, Z. X. Lu, J. P. Martin Collar, I. NovikauE. Sonnendrücker, T. Vernay, L. Villard

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

69 Zitate (Scopus)

Abstract

This paper presents the current state of the global gyrokinetic code ORB5 as an update of the previous reference (Jolliet et al., 2007). The ORB5 code solves the electromagnetic Vlasov–Maxwell system of equations using a PIC scheme and also includes collisions and strong flows. The code assumes multiple gyrokinetic ion species at all wavelengths for the polarization density and drift-kinetic electrons. Variants of the physical model can be selected for electrons such as assuming an adiabatic response or a “hybrid” model in which passing electrons are assumed adiabatic and trapped electrons are drift-kinetic. A Fourier filter as well as various control variates and noise reduction techniques enable simulations with good signal-to-noise ratios at a limited numerical cost. They are completed with different momentum and zonal flow-conserving heat sources allowing for temperature-gradient and flux-driven simulations. The code, which runs on both CPUs and GPUs, is well benchmarked against other similar codes and analytical predictions, and shows good scalability up to thousands of nodes.

OriginalspracheEnglisch
Aufsatznummer107072
FachzeitschriftComputer Physics Communications
Jahrgang251
DOIs
PublikationsstatusVeröffentlicht - Juni 2020
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „ORB5: A global electromagnetic gyrokinetic code using the PIC approach in toroidal geometry“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren