Optimized capacitive active ripple compensation topology for a 3.7 kW single-phase high power density on-board charger of electric vehicles

Issa Hammoud, Nikolas Bauer, Ingmar Kallfass, Ralph Kennel

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

3 Zitate (Scopus)

Abstract

In this paper, a comprehensive investigation of the capacitive active ripple compensation (ARC) techniques is made to conclude which one is optimal to be used in on-board chargers of electric vehicles. Crucial aspects in such an application are: lifetime, volumetric and specific power density (including components’ size and the needed cooling solution), and overall efficiency of the charger. As presented in this paper, all capacitive ARC topologies (buck, boost, and buck–boost) have successfully diverted the low-frequency ripple from the dc side with a maximized power density. The ARC circuit consists of two additional switches, a smoothing auxiliary inductor, and a storage auxiliary capacitor. Finally, the buck capacitive ARC topology proves to be the optimal ARC technique for on-board chargers because of its maximal power density, minimal loss behavior and voltage stress, and long lifetime capability as it requires a downsized capacitance to the extent, where film capacitors or ceramic capacitors can replace the normally used bulky electrolytic capacitors. The performance of the three capacitive ARC techniques is proved by simulation results.

OriginalspracheEnglisch
Seiten (von - bis)685-697
Seitenumfang13
FachzeitschriftElectrical Engineering
Jahrgang101
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - 1 Sept. 2019

Fingerprint

Untersuchen Sie die Forschungsthemen von „Optimized capacitive active ripple compensation topology for a 3.7 kW single-phase high power density on-board charger of electric vehicles“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren