TY - JOUR
T1 - Optimization of Rhodococcus erythropolis JCM3201T Nutrient Media to Improve Biomass, Lipid, and Carotenoid Yield Using Response Surface Methodology
AU - Engelhart-Straub, Selina
AU - Haack, Martina
AU - Awad, Dania
AU - Brueck, Thomas
AU - Mehlmer, Norbert
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/9
Y1 - 2023/9
N2 - The oleaginous bacterium Rhodococcus erythropolis JCM3201T offers various unique enzyme capabilities, and it is a potential producer of industrially relevant compounds, such as triacylglycerol and carotenoids. To develop this strain into an efficient production platform, the characterization of the strain’s nutritional requirement is necessary. In this work, we investigate its substrate adaptability. Therefore, the strain was cultivated using nine nitrogen and eight carbon sources at a carbon (16 g L−1) and nitrogen (0.16 g L−1) weight ratio of 100:1. The highest biomass accumulation (3.1 ± 0.14 g L−1) was achieved using glucose and ammonium acetate. The highest lipid yield (156.7 ± 23.0 mg g−1DCW) was achieved using glucose and yeast extract after 192 h. In order to enhance the dependent variables: biomass, lipid and carotenoid accumulation after 192 h, for the first time, a central composite design was employed to determine optimal nitrogen and carbon concentrations. Nine different concentrations were tested. The center point was tested in five biological replicates, while all other concentrations were tested in duplicates. While the highest biomass (8.00 ± 0.27 g L−1) was reached at C:N of 18.87 (11 g L−1 carbon, 0.583 g L−1 nitrogen), the highest lipid yield (100.5 ± 4.3 mg g−1DCW) was determined using a medium with 11 g L−1 of carbon and only 0.017 g L−1 of nitrogen. The highest carotenoid yield (0.021 ± 0.001 Abs454nm mg−1DCW) was achieved at a C:N of 12 (6 g L−1 carbon, 0.5 g L−1 nitrogen). The presented results provide new insights into the physiology of R. erythropolis under variable nutritional states, enabling the selection of an optimized media composition for the production of valuable oleochemicals or pigments, such as rare odd-chain fatty acids and monocyclic carotenoids.
AB - The oleaginous bacterium Rhodococcus erythropolis JCM3201T offers various unique enzyme capabilities, and it is a potential producer of industrially relevant compounds, such as triacylglycerol and carotenoids. To develop this strain into an efficient production platform, the characterization of the strain’s nutritional requirement is necessary. In this work, we investigate its substrate adaptability. Therefore, the strain was cultivated using nine nitrogen and eight carbon sources at a carbon (16 g L−1) and nitrogen (0.16 g L−1) weight ratio of 100:1. The highest biomass accumulation (3.1 ± 0.14 g L−1) was achieved using glucose and ammonium acetate. The highest lipid yield (156.7 ± 23.0 mg g−1DCW) was achieved using glucose and yeast extract after 192 h. In order to enhance the dependent variables: biomass, lipid and carotenoid accumulation after 192 h, for the first time, a central composite design was employed to determine optimal nitrogen and carbon concentrations. Nine different concentrations were tested. The center point was tested in five biological replicates, while all other concentrations were tested in duplicates. While the highest biomass (8.00 ± 0.27 g L−1) was reached at C:N of 18.87 (11 g L−1 carbon, 0.583 g L−1 nitrogen), the highest lipid yield (100.5 ± 4.3 mg g−1DCW) was determined using a medium with 11 g L−1 of carbon and only 0.017 g L−1 of nitrogen. The highest carotenoid yield (0.021 ± 0.001 Abs454nm mg−1DCW) was achieved at a C:N of 12 (6 g L−1 carbon, 0.5 g L−1 nitrogen). The presented results provide new insights into the physiology of R. erythropolis under variable nutritional states, enabling the selection of an optimized media composition for the production of valuable oleochemicals or pigments, such as rare odd-chain fatty acids and monocyclic carotenoids.
KW - FAMEs
KW - Rhodococcus
KW - carotenoids
KW - central composite design
KW - lipids
KW - media optimization
KW - response surface methodology
UR - http://www.scopus.com/inward/record.url?scp=85172805228&partnerID=8YFLogxK
U2 - 10.3390/microorganisms11092147
DO - 10.3390/microorganisms11092147
M3 - Article
AN - SCOPUS:85172805228
SN - 2076-2607
VL - 11
JO - Microorganisms
JF - Microorganisms
IS - 9
M1 - 2147
ER -