Optimization of fiber-steered composites by using the iso-contour method with maximum curvature constraint

A. L. Arsenyeva, F. Duddeck

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

The paper presents a novel method for the optimization of fiber-steered composite shell structures, considering manufacturability constraints, expressed in terms of maximum allowed curvature - maximum fiber curvature constraint (MFCC). Unlike the average fiber curvature constraint (AFCC) [1], the method is able to capture local effects, guaranteeing the manufacturability of the optimal design. In this research, the previously introduced iso-contour method [2], where the fiber paths are represented as iso-contour lines of an artificial surface, defined over the 2D geometry domain, is extended by a technique to compute the maximum fiber curvature. The method is successfully tested with exemplary problems, including the optimization of the clamped plate stiffness and design of the fuselage panel for maximum buckling force. Results show, that the introduced method can precisely control the maximum curvature constraint during the fiber-steered composite optimization, and obtained designs provide significant improvement over simple laminates.

OriginalspracheEnglisch
TitelECCM 2016 - Proceeding of the 17th European Conference on Composite Materials
Herausgeber (Verlag)European Conference on Composite Materials, ECCM
ISBN (elektronisch)9783000533877
PublikationsstatusVeröffentlicht - 2016
Veranstaltung17th European Conference on Composite Materials, ECCM 2016 - Munich, Deutschland
Dauer: 26 Juni 201630 Juni 2016

Publikationsreihe

NameECCM 2016 - Proceeding of the 17th European Conference on Composite Materials

Konferenz

Konferenz17th European Conference on Composite Materials, ECCM 2016
Land/GebietDeutschland
OrtMunich
Zeitraum26/06/1630/06/16

Fingerprint

Untersuchen Sie die Forschungsthemen von „Optimization of fiber-steered composites by using the iso-contour method with maximum curvature constraint“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren