Optimization and Interpretability of Graph Attention Networks for Small Sparse Graph Structures in Automotive Applications

Marion Neumeier, Andreas Tollkuhn, Sebastian Dorn, Michael Botsch, Wolfgang Utschick

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

For automotive applications, the Graph Attention Network (GAT) is a prominently used architecture to include relational information of a traffic scenario during feature embedding. As shown in this work, however, one of the most popular GAT realizations, namely GATv2, has potential pitfalls that hinder an optimal parameter learning. Especially for small and sparse graph structures a proper optimization is problematic. To surpass limitations, this work proposes architectural modifications of GATv2. In controlled experiments, it is shown that the proposed model adaptions improve prediction performance in a node-level regression task and make it more robust to parameter initialization. This work aims for a better understanding of the attention mechanism and analyzes its interpretability of identifying causal importance.

OriginalspracheEnglisch
TitelIV 2023 - IEEE Intelligent Vehicles Symposium, Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9798350346916
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung34th IEEE Intelligent Vehicles Symposium, IV 2023 - Anchorage, USA/Vereinigte Staaten
Dauer: 4 Juni 20237 Juni 2023

Publikationsreihe

NameIEEE Intelligent Vehicles Symposium, Proceedings
Band2023-June

Konferenz

Konferenz34th IEEE Intelligent Vehicles Symposium, IV 2023
Land/GebietUSA/Vereinigte Staaten
OrtAnchorage
Zeitraum4/06/237/06/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Optimization and Interpretability of Graph Attention Networks for Small Sparse Graph Structures in Automotive Applications“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren