Optimal Scheduling for Discounted Age Penalty Minimization in Multi-Loop Networked Control

Onur Ayan, Mikhail Vilgelm, Wolfgang Kellerer

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

15 Zitate (Scopus)

Abstract

Age-of-information (AoI) is a metric quantifying information freshness at the receiver. Since AoI combines packet generation frequency, packet loss, and delay into a single metric, it has received a lot of research attention as an interface between communication network and application. In this work, we apply AoI to the problem of wireless scheduling for multi-loop networked control systems (NCS), i.e., feedback control loops closed over a shared wireless network. We model the scheduling problem as a Markov decision process (MDP) with AoI as its observable states and derive a relation of control system error and AoI. We further derive a stationary scheduling policy to minimize control error over an infinite horizon. We show that our scheduler outperforms the state-of-the-art scheduling policies for NCS. To the best of our knowledge, this is the first work proposing an AoI-based wireless scheduling policy that minimizes the control error over an infinite horizon for multi-loop NCS.

OriginalspracheEnglisch
Titel2020 IEEE 17th Annual Consumer Communications and Networking Conference, CCNC 2020
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781728138930
DOIs
PublikationsstatusVeröffentlicht - Jan. 2020
Veranstaltung17th IEEE Annual Consumer Communications and Networking Conference, CCNC 2020 - Las Vegas, USA/Vereinigte Staaten
Dauer: 10 Jan. 202013 Jan. 2020

Publikationsreihe

Name2020 IEEE 17th Annual Consumer Communications and Networking Conference, CCNC 2020

Konferenz

Konferenz17th IEEE Annual Consumer Communications and Networking Conference, CCNC 2020
Land/GebietUSA/Vereinigte Staaten
OrtLas Vegas
Zeitraum10/01/2013/01/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Optimal Scheduling for Discounted Age Penalty Minimization in Multi-Loop Networked Control“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren