Optimal intrinsic descriptors for non-rigid shape analysis

Thomas Windheuser, Matthias Vestner, Emanuele Rodolà, Rudolph Triebel, Daniel Cremers

Publikation: KonferenzbeitragPapierBegutachtung

26 Zitate (Scopus)

Abstract

We propose novel point descriptors for 3D shapes with the potential to match two shapes representing the same object undergoing natural deformations. These deformations are more general than the often assumed isometries, and we use labeled training data to learn optimal descriptors for such cases. Furthermore, instead of explicitly defining the descriptor, we introduce new Mercer kernels, for which we formally show that their corresponding feature space mapping is a generalization of either the Heat Kernel Signature or the Wave Kernel Signature. I.e. the proposed descriptors are guaranteed to be at least as precise as any Heat Kernel Signature or Wave Kernel Signature of any parameterisation. In experiments, we show that our implicitly defined, infinite-dimensional descriptors can better deal with non-isometric deformations than state-of-the-art methods.

OriginalspracheEnglisch
DOIs
PublikationsstatusVeröffentlicht - 2014
Veranstaltung25th British Machine Vision Conference, BMVC 2014 - Nottingham, Großbritannien/Vereinigtes Königreich
Dauer: 1 Sept. 20145 Sept. 2014

Konferenz

Konferenz25th British Machine Vision Conference, BMVC 2014
Land/GebietGroßbritannien/Vereinigtes Königreich
OrtNottingham
Zeitraum1/09/145/09/14

Fingerprint

Untersuchen Sie die Forschungsthemen von „Optimal intrinsic descriptors for non-rigid shape analysis“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren