Optimal Decision Diagrams for Classification

Alexandre M. Florio, Pedro Martins, Maximilian Schiffer, Thiago Serra, Thibaut Vidal

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

Decision diagrams for classification have some notable advantages over decision trees, as their internal connections can be determined at training time and their width is not bound to grow exponentially with their depth. Accordingly, decision diagrams are usually less prone to data fragmentation in internal nodes. However, the inherent complexity of training these classifiers acted as a long-standing barrier to their widespread adoption. In this context, we study the training of optimal decision diagrams (ODDs) from a mathematical programming perspective. We introduce a novel mixed-integer linear programming model for training and demonstrate its applicability for many datasets of practical importance. Further, we show how this model can be easily extended for fairness, parsimony, and stability notions. We present numerical analyses showing that our model allows training ODDs in short computational times, and that ODDs achieve better accuracy than optimal decision trees, while allowing for improved stability without significant accuracy losses.

OriginalspracheEnglisch
TitelAAAI-23 Technical Tracks 6
Redakteure/-innenBrian Williams, Yiling Chen, Jennifer Neville
Herausgeber (Verlag)AAAI Press
Seiten7577-7585
Seitenumfang9
ISBN (elektronisch)9781577358800
PublikationsstatusVeröffentlicht - 27 Juni 2023
Veranstaltung37th AAAI Conference on Artificial Intelligence, AAAI 2023 - Washington, USA/Vereinigte Staaten
Dauer: 7 Feb. 202314 Feb. 2023

Publikationsreihe

NameProceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Band37

Konferenz

Konferenz37th AAAI Conference on Artificial Intelligence, AAAI 2023
Land/GebietUSA/Vereinigte Staaten
OrtWashington
Zeitraum7/02/2314/02/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Optimal Decision Diagrams for Classification“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren