Ontology Based AI Planning and Scheduling for Robotic Assembly

Jingyun Zhao, Birgit Vogel-Heuser, Jicong Ao, Yansong Wu, Liding Zhang, Fandi Hartl, Dominik Hujo, Zhenshan Bing, Fan Wu, Alois Knoll, Sami Haddadin, Bernd Vojanec, Timo Markert, André Kraft

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

The rising demand for customized products necessitates the integration of multiple robotic systems, underscoring the need for advanced production planning and scheduling. This paper introduces an ontology-based, artificial intelligence-enhanced method for dynamic task planning and scheduling, aimed at improving the efficiency of production process, reducing machine downtime, and consequently increasing throughput in assembly operations. Designed to generate and execute feasible production plans dynamically, this method minimizes manual planning and scheduling efforts. We evaluate its effectiveness using two gear assembly use cases with various robot skills, highlighting its flexibility in planning and scheduling and its contributions to the evolution of smart manufacturing. The method's adaptability suggests its applicability across diverse smart factory environments.

OriginalspracheEnglisch
Titel2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten9855-9862
Seitenumfang8
ISBN (elektronisch)9798350377705
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024 - Abu Dhabi, Vereinigte Arabische Emirate
Dauer: 14 Okt. 202418 Okt. 2024

Publikationsreihe

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (elektronisch)2153-0866

Konferenz

Konferenz2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
Land/GebietVereinigte Arabische Emirate
OrtAbu Dhabi
Zeitraum14/10/2418/10/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Ontology Based AI Planning and Scheduling for Robotic Assembly“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren