Online Learning-based Formation Control of Multi-Agent Systems with Gaussian Processes

Thomas Beckers, Sandra Hirche, Leonardo Colombo

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

Formation control algorithms for multi-agent systems have gained much attention in the recent years due to the increasing amount of mobile and aerial robotic swarms. The design of safe controllers for these vehicles is a substantial aspect for an increasing range of application domains. However, parts of the vehicle's dynamics and external disturbances are often unknown or very time-consuming to model. To overcome this issue, we present a formation control law for multi-agent systems based on double integrator dynamics by using Gaussian Processes for online learning of the unknown dynamics. The presented approach guarantees a bounded error to the desired formation with high probability, where the bound is explicitly given. A numerical example highlights the effectiveness of the learning-based formation control law.

OriginalspracheEnglisch
Titel60th IEEE Conference on Decision and Control, CDC 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten2197-2202
Seitenumfang6
ISBN (elektronisch)9781665436595
DOIs
PublikationsstatusVeröffentlicht - 2021
Veranstaltung60th IEEE Conference on Decision and Control, CDC 2021 - Austin, USA/Vereinigte Staaten
Dauer: 13 Dez. 202117 Dez. 2021

Publikationsreihe

NameProceedings of the IEEE Conference on Decision and Control
Band2021-December
ISSN (Print)0743-1546
ISSN (elektronisch)2576-2370

Konferenz

Konferenz60th IEEE Conference on Decision and Control, CDC 2021
Land/GebietUSA/Vereinigte Staaten
OrtAustin
Zeitraum13/12/2117/12/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Online Learning-based Formation Control of Multi-Agent Systems with Gaussian Processes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren