Online iterative learning control of zero-moment point for biped walking stabilization

Kai Hu, Christian Ott, Dongheui Lee

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

8 Zitate (Scopus)

Abstract

Biped walking control based on simplified models relies much on online feedback stabilizers to compensate the zero-moment point (ZMP) error which partially comes from the model inconsistency of pattern generation. Inspired by the fact that human improves the performance by practicing a task for multiple times, this paper presents an online learning control framework for improving the robustness during the dominant repetitive phases of walking. The key idea is to learn a compensative feedforward ZMP term from previous ZMP error trajectories in order to achieve better ZMP tracking. Based on the iterative learning control theory, the learning process is conducted online continuously with minimal iteration of two footsteps, which can practically run in parallel with state-of-the-art walking controllers. A varying forgetting factor is designed to reduce the influence of the landing impact. Convergence of the learning control algorithm and improved ZMP tracking performance is verified both in dynamics simulation and experiment on the DLR humanoid robot TORO.

OriginalspracheEnglisch
Titel2015 IEEE International Conference on Robotics and Automation, ICRA 2015
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten5127-5133
Seitenumfang7
AuflageJune
ISBN (elektronisch)9781479969234
DOIs
PublikationsstatusVeröffentlicht - 29 Juni 2015
Extern publiziertJa
Veranstaltung2015 IEEE International Conference on Robotics and Automation, ICRA 2015 - Seattle, USA/Vereinigte Staaten
Dauer: 26 Mai 201530 Mai 2015

Publikationsreihe

NameProceedings - IEEE International Conference on Robotics and Automation
NummerJune
Band2015-June
ISSN (Print)1050-4729

Konferenz

Konferenz2015 IEEE International Conference on Robotics and Automation, ICRA 2015
Land/GebietUSA/Vereinigte Staaten
OrtSeattle
Zeitraum26/05/1530/05/15

Fingerprint

Untersuchen Sie die Forschungsthemen von „Online iterative learning control of zero-moment point for biped walking stabilization“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren