Online bias-aware disease module mining with ROBUST-Web

Suryadipto Sarkar, Marta Lucchetta, Andreas Maier, Mohamed M. Abdrabbou, Jan Baumbach, Markus List, Martin H. Schaefer, David B. Blumenthal

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

Summary: We present ROBUST-Web which implements our recently presented ROBUST disease module mining algorithm in a user-friendly web application. ROBUST-Web features seamless downstream disease module exploration via integrated gene set enrichment analysis, tissue expression annotation, and visualization of drug-protein and disease-gene links. Moreover, ROBUST-Web includes bias-aware edge costs for the underlying Steiner tree model as a new algorithmic feature, which allow to correct for study bias in protein-protein interaction networks and further improves the robustness of the computed modules.

OriginalspracheEnglisch
Aufsatznummerbtad345
FachzeitschriftBioinformatics
Jahrgang35
Ausgabenummer6
DOIs
PublikationsstatusVeröffentlicht - 1 Juni 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „Online bias-aware disease module mining with ROBUST-Web“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren