One-shot integral invariant shape priors for variational segmentation

Siddharth Manay, Daniel Cremers, Anthony Yezzi, Stefano Soatto

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

We match shapes, even under severe deformations, via a smooth reparametrization of their integral invariant signatures. These robust signatures and correspondences are the foundation of a shape energy functional for variational image segmentation. Integral invariant shape templates do not require registration and allow for significant deformations of the contour, such as the articulation of the object's parts. This enables generalization to multiple instances of a shape from a single template, instead of requiring several templates for searching or training. This paper motivates and presents the energy functional, derives the gradient descent direction to optimize the functional, and demonstrates the method, coupled with a data term, on real image data where the object's parts are articulated.

OriginalspracheEnglisch
TitelEnergy Minimization Methods in Computer Vision and Pattern Recognition - 5th International Workshop, EMMCVPR 2005, Proceedings
Seiten414-426
Seitenumfang13
DOIs
PublikationsstatusVeröffentlicht - 2005
Extern publiziertJa
Veranstaltung5th International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR 2005 - St. Augustine, FL, USA/Vereinigte Staaten
Dauer: 9 Nov. 200511 Nov. 2005

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band3757 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz5th International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR 2005
Land/GebietUSA/Vereinigte Staaten
OrtSt. Augustine, FL
Zeitraum9/11/0511/11/05

Fingerprint

Untersuchen Sie die Forschungsthemen von „One-shot integral invariant shape priors for variational segmentation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren