On the use of overcomplete dictionaries for spectral unmixing

Jakub Bieniarz, Rupert Muller, Xiaoxiang Zhu, Peter Reinartz

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

13 Zitate (Scopus)

Abstract

Hyperspectral unmixing is a sub pixel classification method which aims at recovering fraction and type of materials mixed in a single pixel. This work addresses the unmixing problem from the compressive sensing point of view by using overcomplete dictionaries enabling automatization of the process. However, overcomplete dictionaries of spectra are highly coherent which might confuse the final unmixing result. To deal with this problem we propose the use of differentiated spectra for coherence reduction. In this paper we study the approximation error for the proposed method as well as the correctness of the material detection.

OriginalspracheEnglisch
Titel2012 4th Workshop on Hyperspectral Image and Signal Processing, WHISPERS 2012
Herausgeber (Verlag)IEEE Computer Society
ISBN (Print)9781479934065
DOIs
PublikationsstatusVeröffentlicht - 2012
Extern publiziertJa
Veranstaltung2012 4th Workshop on Hyperspectral Image and Signal Processing, WHISPERS 2012 - Shanghai, China
Dauer: 4 Juni 20127 Juni 2012

Publikationsreihe

NameWorkshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing
ISSN (Print)2158-6276

Konferenz

Konferenz2012 4th Workshop on Hyperspectral Image and Signal Processing, WHISPERS 2012
Land/GebietChina
OrtShanghai
Zeitraum4/06/127/06/12

Fingerprint

Untersuchen Sie die Forschungsthemen von „On the use of overcomplete dictionaries for spectral unmixing“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren