On the Reverse Loomis–Whitney Inequality

Stefano Campi, Peter Gritzmann, Paolo Gronchi

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

7 Zitate (Scopus)

Abstract

The present paper deals with the problem of computing (or at least estimating) the LW -number λ(n) , i.e., the supremum of all γ such that for each convex body K in Rn there exists an orthonormal basis { u1, … , un} such that voln(K)n-1i=1nvoln-1(K|ui⊥),where K|ui⊥ denotes the orthogonal projection of K onto the hyperplane ui⊥ perpendicular to ui. Any such inequality can be regarded as a reverse to the well-known classical Loomis–Whitney inequality. We present various results on such reverse Loomis–Whitney inequalities. In particular, we prove some structural results, give bounds on λ(n) and deal with the problem of actually computing the LW -constant of a rational polytope.

OriginalspracheEnglisch
Seiten (von - bis)115-144
Seitenumfang30
FachzeitschriftDiscrete and Computational Geometry
Jahrgang60
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 1 Juli 2018

Fingerprint

Untersuchen Sie die Forschungsthemen von „On the Reverse Loomis–Whitney Inequality“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren