On the Herbrand Kleene universe for nondeterministic computations

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

8 Zitate (Scopus)

Abstract

For nondeterministic recursive equations over an arbitrary signature of function symbols including the nondeterministic choice operator “or” the interpretation is factorized according to the techniques developed by the present author (1982). It is shown that one can either associate an infinite tree with the equations, then interpret the function symbol “or” as a nondeterministic choice operator and so mapping the tree onto a set of infinite trees and then interpret these trees. Or one can interpret the recursive equation directly yielding a set-valued function. Both possibilities lead to the same result, i.e., one obtains a commuting diagram. However, one has to use more refined techniques than just powerdomains. This explains and solves a problem posed by Nivat (1980). Basically, the construction gives a generalization of the powerdomain approach applicable to arbitrary nonflat (nondiscrete) algebraic domains.

OriginalspracheEnglisch
TitelMathematical Foundations of Computer Science 1984 - Proceedings, 11th Symposium
Redakteure/-innenMichael P. Chytil, Vaclav Koubek
Herausgeber (Verlag)Springer Verlag
Seiten214-222
Seitenumfang9
ISBN (Print)9783540133728
DOIs
PublikationsstatusVeröffentlicht - 1984
Extern publiziertJa
Veranstaltung11th Symposium on Mathematical Foundations of Computer Science, MFCS 1984 - Praha, Serbien
Dauer: 3 Sept. 19847 Sept. 1984

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band176 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz11th Symposium on Mathematical Foundations of Computer Science, MFCS 1984
Land/GebietSerbien
OrtPraha
Zeitraum3/09/847/09/84

Fingerprint

Untersuchen Sie die Forschungsthemen von „On the Herbrand Kleene universe for nondeterministic computations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren