On the dimension of subspaces with bounded Schmidt rank

Toby Cubitt, Ashley Montanaro, Andreas Winter

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

61 Zitate (Scopus)

Abstract

We consider the question of how large a subspace of a given bipartite quantum system can be when the subspace contains only highly entangled states. This is motivated in part by results of Hayden [e-print arXiv:quant-ph0407049; Commun. Math. Phys., 265, 95 (2006)], which show that in large d×d -dimensional systems there exist random subspaces of dimension almost d2, all of whose states have entropy of entanglement at least log d-O (1). It is also a generalization of results on the dimension of completely entangled subspaces, which have connections with the construction of unextendible product bases. Here we take as entanglement measure the Schmidt rank, and determine, for every pair of local dimensions dA and dB, and every r, the largest dimension of a subspace consisting only of entangled states of Schmidt rank r or larger. This exact answer is a significant improvement on the best bounds that can be obtained using the random subspace techniques in Hayden We also determine the converse: the largest dimension of a subspace with an upper bound on the Schmidt rank. Finally, we discuss the question of subspaces containing only states with Schmidt equal to r.

OriginalspracheEnglisch
Aufsatznummer022107
FachzeitschriftJournal of Mathematical Physics
Jahrgang49
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 2008
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „On the dimension of subspaces with bounded Schmidt rank“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren