On the complexity of computing mixed volumes

Martin Dyer, Peter Gritzmann, Alexander Hufnagel

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

45 Zitate (Scopus)

Abstract

This paper gives various (positive and negative) results on the complexity of the problem of computing and approximating mixed volumes of polytopes and more general convex bodies in arbitrary dimension. On the negative side, we present several #ℙ-hardness results that focus on the difference of computing mixed volumes versus computing the volume of polytopes. We show that computing the volume of zonotopes is #ℙ-hard (while each corresponding mixed volume can be computed easily) but also give examples showing that computing mixed volumes is hard even when computing the volume is easy. On the positive side, we derive a randomized algorithm for computing the mixed volumes equation presented it of well-presented convex bodies K1, . . . , Ks, where m1, . . . , ms ∈ ℕ0 and m1 ≥ n - ψ(n) with ψ(n) = o(log n/log log n). The algorithm is an interpolation method based on polynomial-time randomized algorithms for computing the volume of convex bodies. This paper concludes with applications of our results to various problems in discrete mathematics, combinatorics, computational convexity, algebraic geometry, geometry of numbers, and operations research.

OriginalspracheEnglisch
Seiten (von - bis)356-400
Seitenumfang45
FachzeitschriftSIAM Journal on Computing
Jahrgang27
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 1998

Fingerprint

Untersuchen Sie die Forschungsthemen von „On the complexity of computing mixed volumes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren