On some aspects of the discretization of the Suslov problem

Fernando Jiménez, Jürgen Soheürle

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

In this paper we explore the discretization of Euler-Poincaré-Suslov equations on SO(3), i.e. of the Suslov problem. We show that the consistency order corresponding to the unreduced and reduced setups, when the discrete reconstruction equation is given by a Cayley retraction map, are related to each other in a nontrivial way. We give precise conditions under which general and variational integrators generate a discrete flow preserving the constraint distribution. We establish general consistency bounds and illustrate the performance of several discretizations by some plots. Moreover, along the lines of [15] we show that any constraints-preserving discretization may be understood as being generated by the exact evolution map of a time-periodic non-autonomous perturbation of the original continuous-time nonholonomic system.

OriginalspracheEnglisch
Seiten (von - bis)43-68
Seitenumfang26
FachzeitschriftJournal of Geometric Mechanics
Jahrgang10
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - März 2018

Fingerprint

Untersuchen Sie die Forschungsthemen von „On some aspects of the discretization of the Suslov problem“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren