On Identifiability of Conditional Causal Effects

Yaroslav Kivva, Jalal Etesami, Negar Kiyavash

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

Abstract

We address the problem of identifiability of an arbitrary conditional causal effect given both the causal graph and a set of any observational and/or interventional distributions of the form QrSs:“PpS|dopV zSqq, where V denotes the set of all observed variables and S Ď V. We call this problem conditional generalized identifiability (c-gID in short) and prove the completeness of Pearl's do-calculus for the c-gID problem by providing sound and complete algorithm for the c-gID problem. This work revisited the c-gID problem in Lee et al. [2020], Correa et al. [2021] by adding explicitly the positivity assumption which is crucial for identifiability. It extends the results of [Lee et al., 2019, Kivva et al., 2022] on general identifiability (gID) which studied the problem for unconditional causal effects and Shpitser and Pearl [2006b] on identifiability of conditional causal effects given merely the observational distribution PpVq as our algorithm generalizes the algorithms proposed in [Kivva et al., 2022] and [Shpitser and Pearl, 2006b].

OriginalspracheEnglisch
Seiten (von - bis)1078-1086
Seitenumfang9
FachzeitschriftProceedings of Machine Learning Research
Jahrgang216
PublikationsstatusVeröffentlicht - 2023
Veranstaltung39th Conference on Uncertainty in Artificial Intelligence, UAI 2023 - Pittsburgh, USA/Vereinigte Staaten
Dauer: 31 Juli 20234 Aug. 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „On Identifiability of Conditional Causal Effects“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren