On a subdiffusive tumour growth model with fractional time derivative

Marvin Fritz, Christina Kuttler, Mabel L. Rajendran, Barbara Wohlmuth, Laura Scarabosio

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

13 Zitate (Scopus)

Abstract

In this work, we present and analyse a system of coupled partial differential equations, which models tumour growth under the influence of subdiffusion, mechanical effects, nutrient supply and chemotherapy. The subdiffusion of the system is modelled by a time fractional derivative in the equation governing the volume fraction of the tumour cells. The mass densities of the nutrients and the chemotherapeutic agents are modelled by reaction diffusion equations. We prove the existence and uniqueness of a weak solution to the model via the Faedo-Galerkin method and the application of appropriate compactness theorems. Lastly, we propose a fully discretized system and illustrate the effects of the fractional derivative and the influence of the fractional parameter in numerical examples.

OriginalspracheEnglisch
Seiten (von - bis)688-729
Seitenumfang42
FachzeitschriftIMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications)
Jahrgang86
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - 1 Aug. 2021

Fingerprint

Untersuchen Sie die Forschungsthemen von „On a subdiffusive tumour growth model with fractional time derivative“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren