On a procedure to derive ϵ-factorised differential equations beyond polylogarithms

Lennard Görges, Christoph Nega, Lorenzo Tancredi, Fabian J. Wagner

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

15 Zitate (Scopus)

Abstract

In this manuscript, we elaborate on a procedure to derive ϵ-factorised differential equations for multi-scale, multi-loop classes of Feynman integrals that evaluate to special functions beyond multiple polylogarithms. We demonstrate the applicability of our approach to diverse classes of problems, by working out ϵ-factorised differential equations for single- and multi-scale problems of increasing complexity. To start we are reconsidering the well-studied equal-mass two-loop sunrise case, and move then to study other elliptic two-, three- and four-point problems depending on multiple different scales. Finally, we showcase how the same approach allows us to obtain ϵ-factorised differential equations also for Feynman integrals that involve geometries beyond a single elliptic curve.

OriginalspracheEnglisch
Aufsatznummer206
FachzeitschriftJournal of High Energy Physics
Jahrgang2023
Ausgabenummer7
DOIs
PublikationsstatusVeröffentlicht - Juli 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „On a procedure to derive ϵ-factorised differential equations beyond polylogarithms“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren