ODEFORMER: SYMBOLIC REGRESSION OF DYNAMICAL SYSTEMS WITH TRANSFORMERS

Stéphane d'Ascoli, Sören Becker, Alexander Mathis, Philippe Schwaller, Niki Kilbertus

Publikation: KonferenzbeitragPapierBegutachtung

1 Zitat (Scopus)

Abstract

We introduce ODEFormer, the first transformer able to infer multidimensional ordinary differential equation (ODE) systems in symbolic form from the observation of a single solution trajectory. We perform extensive evaluations on two datasets: (i) the existing 'Strogatz' dataset featuring two-dimensional systems; (ii) ODEBench, a collection of one- to four-dimensional systems that we carefully curated from the literature to provide a more holistic benchmark. ODEFormer consistently outperforms existing methods while displaying substantially improved robustness to noisy and irregularly sampled observations, as well as faster inference. We release our code, model and benchmark at https://github.com/sdascoli/odeformer.

OriginalspracheEnglisch
PublikationsstatusVeröffentlicht - 2024
Veranstaltung12th International Conference on Learning Representations, ICLR 2024 - Hybrid, Vienna, Österreich
Dauer: 7 Mai 202411 Mai 2024

Konferenz

Konferenz12th International Conference on Learning Representations, ICLR 2024
Land/GebietÖsterreich
OrtHybrid, Vienna
Zeitraum7/05/2411/05/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „ODEFORMER: SYMBOLIC REGRESSION OF DYNAMICAL SYSTEMS WITH TRANSFORMERS“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren