Object based fusion of polarimetric SAR and hyperspectral imaging for land use classification

Jingliang Hu, Pedram Ghamisi, Andreas Schmitt, Xiao Xiang Zhu

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

14 Zitate (Scopus)

Abstract

In this paper, we propose an object-based fusion approach for the joint use of polarimetric synthetic aperture radar (PolSAR) and hyperspectral data. The proposed approach extracts information from both datasets based on an object-level, which is used here for land use classification. The achieved classification result infers that the proposed methodology improves the classification performance of both hyperspectral and PolSAR data and can properly gather complementary information of the two kinds of dataset. The fusion approach also considers that only limited training samples are available, which is often the case in remote sensing.

OriginalspracheEnglisch
Titel2016 8th Workshop on Hyperspectral Image and Signal Processing
UntertitelEvolution in Remote Sensing, WHISPERS 2016
Herausgeber (Verlag)IEEE Computer Society
ISBN (elektronisch)9781509006083
DOIs
PublikationsstatusVeröffentlicht - 28 Juni 2016
Veranstaltung8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2016 - Los Angeles, USA/Vereinigte Staaten
Dauer: 21 Aug. 201624 Aug. 2016

Publikationsreihe

NameWorkshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing
Band0
ISSN (Print)2158-6276

Konferenz

Konferenz8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2016
Land/GebietUSA/Vereinigte Staaten
OrtLos Angeles
Zeitraum21/08/1624/08/16

Fingerprint

Untersuchen Sie die Forschungsthemen von „Object based fusion of polarimetric SAR and hyperspectral imaging for land use classification“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren