TY - JOUR
T1 - Novel Method for Monitoring the Electrochemical Capacitance by in Situ Impedance Spectroscopy as Indicator for Particle Cracking of Nickel-Rich NCMs
T2 - Part I. Theory and Validation
AU - Oswald, Stefan
AU - Pritzl, Daniel
AU - Wetjen, Morten
AU - Gasteiger, Hubert A.
N1 - Publisher Copyright:
© 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.
PY - 2020/1/6
Y1 - 2020/1/6
N2 - Nickel-rich NCM (LiMO2, with M = Ni, Co, and Mn) cathode active materials for lithium-ion batteries are being increasingly commercialized due to their high specific capacity. However, their capacity retention upon cycling is impaired by crack formation of NCM secondary agglomerates induced by the volume change upon repeated (de)lithiation that depends on the nickel content and the cutoff potential. Particle cracking leads to loss of electrical contact and enhanced side reactions caused by an increased surface area. Here, we introduce a novel method based on electrochemical impedance spectroscopy (EIS) in blocking conditions to quantify the increase in the active material's surface area upon cycling, utilizing the correlation between the surface area of the electrode and the electrochemical double-layer capacitance that is validated experimentally by comparing the capacitance and BET surface area increase of NCM electrodes upon mechanical compression. To quantify the cracking of the particles upon 200 charge/discharge cycles, we perform in situ EIS measurements utilizing a micro-reference electrode and monitor the cathode's impedance response. In addition, the crack formation of cycled NCM particles is validated visually by post mortem FIB-SEM. The effect of volume change on cracking is illuminated through the analysis of LFP and LTO as model materials.
AB - Nickel-rich NCM (LiMO2, with M = Ni, Co, and Mn) cathode active materials for lithium-ion batteries are being increasingly commercialized due to their high specific capacity. However, their capacity retention upon cycling is impaired by crack formation of NCM secondary agglomerates induced by the volume change upon repeated (de)lithiation that depends on the nickel content and the cutoff potential. Particle cracking leads to loss of electrical contact and enhanced side reactions caused by an increased surface area. Here, we introduce a novel method based on electrochemical impedance spectroscopy (EIS) in blocking conditions to quantify the increase in the active material's surface area upon cycling, utilizing the correlation between the surface area of the electrode and the electrochemical double-layer capacitance that is validated experimentally by comparing the capacitance and BET surface area increase of NCM electrodes upon mechanical compression. To quantify the cracking of the particles upon 200 charge/discharge cycles, we perform in situ EIS measurements utilizing a micro-reference electrode and monitor the cathode's impedance response. In addition, the crack formation of cycled NCM particles is validated visually by post mortem FIB-SEM. The effect of volume change on cracking is illuminated through the analysis of LFP and LTO as model materials.
UR - http://www.scopus.com/inward/record.url?scp=85086583896&partnerID=8YFLogxK
U2 - 10.1149/1945-7111/ab9187
DO - 10.1149/1945-7111/ab9187
M3 - Article
AN - SCOPUS:85086583896
SN - 0013-4651
VL - 167
JO - Journal of the Electrochemical Society
JF - Journal of the Electrochemical Society
IS - 10
M1 - 100511
ER -