TY - JOUR
T1 - Novel Method for Monitoring the Electrochemical Capacitance by in Situ Impedance Spectroscopy as Indicator for Particle Cracking of Nickel-Rich NCMs
T2 - Part II. Effect of Oxygen Release Dependent on Particle Morphology
AU - Oswald, Stefan
AU - Pritzl, Daniel
AU - Wetjen, Morten
AU - Gasteiger, Hubert A.
N1 - Publisher Copyright:
© 2021 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.
PY - 2021/12
Y1 - 2021/12
N2 - Nickel-rich NCMs (LiMO2, with M = Ni, Co, and Mn) are increasingly commercialized as cathode active materials for lithium-ion batteries due to their high specific capacity. However, the available capacity is limited due to their structural instability at high state of charge, causing the formation of a resistive surface layer upon release of lattice oxygen, observed at different upper cutoff potentials depending on the NCM composition. To understand the impact of this instability, the correlation of oxygen release, capacity fading, and particle cracking was investigated as a function of state of charge for three nickel-rich NCMs, differing either in composition (i.e., in transition metal ratio) or in morphology (i.e., in primary crystallite size). First, the onset of the release of lattice oxygen was identified by on-line electrochemical mass spectrometry (OEMS). In electrochemical cycling experiments, the NCM capacitance was tracked in situ by impedance spectroscopy (EIS) using a micro-reference electrode while the upper cutoff potential was increased every third cycle stepwise from 3.9 V to 5.0 V. Hereby, the effect of the degree of delithiation on the discharge capacity and on the particle integrity (tracked via its surface area) was examined, both for poly- and single-crystalline NCMs.
AB - Nickel-rich NCMs (LiMO2, with M = Ni, Co, and Mn) are increasingly commercialized as cathode active materials for lithium-ion batteries due to their high specific capacity. However, the available capacity is limited due to their structural instability at high state of charge, causing the formation of a resistive surface layer upon release of lattice oxygen, observed at different upper cutoff potentials depending on the NCM composition. To understand the impact of this instability, the correlation of oxygen release, capacity fading, and particle cracking was investigated as a function of state of charge for three nickel-rich NCMs, differing either in composition (i.e., in transition metal ratio) or in morphology (i.e., in primary crystallite size). First, the onset of the release of lattice oxygen was identified by on-line electrochemical mass spectrometry (OEMS). In electrochemical cycling experiments, the NCM capacitance was tracked in situ by impedance spectroscopy (EIS) using a micro-reference electrode while the upper cutoff potential was increased every third cycle stepwise from 3.9 V to 5.0 V. Hereby, the effect of the degree of delithiation on the discharge capacity and on the particle integrity (tracked via its surface area) was examined, both for poly- and single-crystalline NCMs.
UR - http://www.scopus.com/inward/record.url?scp=85122609915&partnerID=8YFLogxK
U2 - 10.1149/1945-7111/ac3905
DO - 10.1149/1945-7111/ac3905
M3 - Article
AN - SCOPUS:85122609915
SN - 0013-4651
VL - 168
JO - Journal of the Electrochemical Society
JF - Journal of the Electrochemical Society
IS - 12
M1 - 120501
ER -