Nontrivial twisted states in nonlocally coupled Stuart-Landau oscillators

Seungjae Lee, Katharina Krischer

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

6 Zitate (Scopus)

Abstract

A twisted state is an important yet simple form of collective dynamics in an oscillatory medium. Here we describe a nontrivial type of twisted state in a system of nonlocally coupled Stuart-Landau oscillators. The nontrivial twisted state (NTS) is a coherent traveling wave characterized by inhomogeneous profiles of amplitudes and phase gradients, which can be assigned a winding number. To further investigate its properties, several methods are employed. We perform a linear stability analysis in the continuum limit and compare the results with Lyapunov exponents obtained in a finite-size system. The determination of covariant Lyapunov vectors allows us to identify collective modes. Furthermore, we show that the NTS is robust to small heterogeneities in the natural frequencies and present a bifurcation analysis revealing that NTSs are born or annihilated in a saddle-node bifurcation and change their stability in Hopf bifurcations. We observe stable NTSs with winding number 1 and 2. The latter can lose stability in a supercritical Hopf bifurcation, leading to a modulated 2-NTS.

OriginalspracheEnglisch
Aufsatznummer044210
FachzeitschriftPhysical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
Jahrgang106
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - Okt. 2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „Nontrivial twisted states in nonlocally coupled Stuart-Landau oscillators“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren