TY - JOUR
T1 - Nonperturbative approach to femtosecond spectroscopy
T2 - General theory and application to multidimensional nonadiabatic photoisomerization processes
AU - Seidner, Luis
AU - Stock, Gerhard
AU - Domcke, Wolfgang
PY - 1995
Y1 - 1995
N2 - A general nonperturbative approach to calculate femtosecond pump-probe (PP) signals is proposed, which treats both the intramolecular couplings and the field-matter interaction (numerically) exactly. Experimentally as well as in a perturbative calculation it is straightforward to distinguish between different spectroscopic processes through the direction of the wave vector of the emitted radiation. A nonperturbative calculation, on the other hand, yields the overall polarization of the system, which is the sum of all these contributions. We present a general and practical method that allows to extract the individual spectroscopic signals, which are resolved in time, frequency, and direction of the emission, from the overall polarization. We briefly derive the basic expressions for the time-and frequency-resolved PP signals under consideration, and discuss in detail the simplifications that arise when the usual assumptions (i.e., weak laser fields, nonoverlapping pulses, slowly-varying envelope assumption and rotating-wave approximation) are invoked. The computational procedure is illustrated by nonperturbative calculations of the polarizations and PP signals for a one-dimensional shifted harmonic oscillator. To demonstrate the capability of the approach we have evaluated the polarization as well as PP signals for a three-dimensional model system with vibronically coupled potential-energy surfaces, which describes ultrafast nonadiabatic isomerization dynamics triggered by the twisting of a double bond. We consider various wavelengths and pulse durations of the laser fields and study integral and dispersed PP spectra as well as coherent photon-echo signals. It is shown that the time- and frequency-resolved PP signals reflect in real time the disappearance of the reactants and the delayed appearance of the products.
AB - A general nonperturbative approach to calculate femtosecond pump-probe (PP) signals is proposed, which treats both the intramolecular couplings and the field-matter interaction (numerically) exactly. Experimentally as well as in a perturbative calculation it is straightforward to distinguish between different spectroscopic processes through the direction of the wave vector of the emitted radiation. A nonperturbative calculation, on the other hand, yields the overall polarization of the system, which is the sum of all these contributions. We present a general and practical method that allows to extract the individual spectroscopic signals, which are resolved in time, frequency, and direction of the emission, from the overall polarization. We briefly derive the basic expressions for the time-and frequency-resolved PP signals under consideration, and discuss in detail the simplifications that arise when the usual assumptions (i.e., weak laser fields, nonoverlapping pulses, slowly-varying envelope assumption and rotating-wave approximation) are invoked. The computational procedure is illustrated by nonperturbative calculations of the polarizations and PP signals for a one-dimensional shifted harmonic oscillator. To demonstrate the capability of the approach we have evaluated the polarization as well as PP signals for a three-dimensional model system with vibronically coupled potential-energy surfaces, which describes ultrafast nonadiabatic isomerization dynamics triggered by the twisting of a double bond. We consider various wavelengths and pulse durations of the laser fields and study integral and dispersed PP spectra as well as coherent photon-echo signals. It is shown that the time- and frequency-resolved PP signals reflect in real time the disappearance of the reactants and the delayed appearance of the products.
UR - http://www.scopus.com/inward/record.url?scp=36448998969&partnerID=8YFLogxK
U2 - 10.1063/1.469586
DO - 10.1063/1.469586
M3 - Article
AN - SCOPUS:36448998969
SN - 0021-9606
VL - 103
SP - 3998
EP - 4011
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 10
ER -