TY - JOUR
T1 - Nonmonotone trust-region methods for bound-constrained semismooth equations with applications to nonlinear mixed complementarity problems
AU - Ulbrich, Michael
PY - 2001/3
Y1 - 2001/3
N2 - We develop and analyze a class of trust-region methods for bound-constrained semismooth systems of equations. The algorithm is based on a simply constrained differentiable minimization reformulation. Our global convergence results are developed in a very general setting that allows for nonmonotonicity of the function values at subsequent iterates. We propose a way of computing trial steps by a semismooth Newton-like method that is augmented by a projection onto the feasible set. Under a Dennis - Moré-type condition we prove that close to a regular solution the trust-region algorithm turns into this projected Newton method, which is shown to converge locally q-superlinearly or quadratically, respectively, depending on the quality of the approximate subdifferentials used. As an important application we discuss how the developed algorithm can be used to solve nonlinear mixed complementarity problems (MCPs). Hereby, the MCP is converted into a boundconstrained semismooth equation by means of an NCP-function. The efficiency of our algorithm is documented by numerical results for a subset of the MCPLIB problem collection.
AB - We develop and analyze a class of trust-region methods for bound-constrained semismooth systems of equations. The algorithm is based on a simply constrained differentiable minimization reformulation. Our global convergence results are developed in a very general setting that allows for nonmonotonicity of the function values at subsequent iterates. We propose a way of computing trial steps by a semismooth Newton-like method that is augmented by a projection onto the feasible set. Under a Dennis - Moré-type condition we prove that close to a regular solution the trust-region algorithm turns into this projected Newton method, which is shown to converge locally q-superlinearly or quadratically, respectively, depending on the quality of the approximate subdifferentials used. As an important application we discuss how the developed algorithm can be used to solve nonlinear mixed complementarity problems (MCPs). Hereby, the MCP is converted into a boundconstrained semismooth equation by means of an NCP-function. The efficiency of our algorithm is documented by numerical results for a subset of the MCPLIB problem collection.
KW - Global convergence
KW - Nonlinear mixed complementarity problem
KW - Nonmonotone trust region method
KW - Nonsmooth Newton method
KW - Semismooth equation
KW - Superlinear and quadratic convergence
UR - http://www.scopus.com/inward/record.url?scp=0035643190&partnerID=8YFLogxK
U2 - 10.1137/S1052623499356344
DO - 10.1137/S1052623499356344
M3 - Article
AN - SCOPUS:0035643190
SN - 1052-6234
VL - 11
SP - 889
EP - 917
JO - SIAM Journal on Optimization
JF - SIAM Journal on Optimization
IS - 4
ER -