Abstract
Scalable processes are requisite for the robust biomanufacturing of human pluripotent stem cell (hPSC)-derived therapeutics. Toward this end, we demonstrate the xeno-free expansion and directed differentiation of human embryonic and induced pluripotent stem cells to definitive endoderm (DE) in a controlled stirred suspension bioreactor (SSB). Based on previous work on converting hPSCs to insulin-producing progeny, differentiation of two hPSC lines was optimized in planar cultures yielding up to 87% FOXA2+/SOX17+ cells. Next, hPSCs were propagated in an SSB with controlled pH and dissolved oxygen. Cultures displayed a 10- to 12-fold increase in cell number over 5–6 days with the maintenance of pluripotency (>85% OCT4+) and viability (>85%). For differentiation, SSB cultures yielded up to 89% FOXA2+/SOX17+ cells or ~ 8 DE cells per seeded hPSC. Specification to DE cell fate was consistently more efficient in the bioreactor compared to planar cultures. Hence, a tunable strategy is established that is suitable for the xeno-free manufacturing of DE cells from different hPSC lines in scalable SSBs. This study advances bioprocess development for producing a wide gamut of human DE cell-derived therapeutics.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 979-991 |
Seitenumfang | 13 |
Fachzeitschrift | Biotechnology and Bioengineering |
Jahrgang | 118 |
Ausgabenummer | 2 |
DOIs | |
Publikationsstatus | Veröffentlicht - Feb. 2021 |
Extern publiziert | Ja |