Non-ergodic delocalization in the Rosenzweig–Porter model

Per von Soosten, Simone Warzel

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

44 Zitate (Scopus)

Abstract

We consider the Rosenzweig–Porter model H=V+TΦ, where V is a N× N diagonal matrix, Φ is drawn from the N× N Gaussian Orthogonal Ensemble, and N - 1 ≪ T≪ 1. We prove that the eigenfunctions of H are typically supported in a set of approximately NT sites, thereby confirming the existence of a previously conjectured non-ergodic delocalized phase. Our proof is based on martingale estimates along the characteristic curves of the stochastic advection equation satisfied by the local resolvent of the Brownian motion representation of H.

OriginalspracheEnglisch
Seiten (von - bis)905-922
Seitenumfang18
FachzeitschriftLetters in Mathematical Physics
Jahrgang109
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - 3 Apr. 2019

Fingerprint

Untersuchen Sie die Forschungsthemen von „Non-ergodic delocalization in the Rosenzweig–Porter model“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren