Noise robust ASR in reverberated multisource environments applying convolutive NMF and Long Short-Term Memory

Martin Wöllmer, Felix Weninger, Jürgen Geiger, Björn Schuller, Gerhard Rigoll

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

12 Zitate (Scopus)

Abstract

This article proposes and evaluates various methods to integrate the concept of bidirectional Long Short-Term Memory (BLSTM) temporal context modeling into a system for automatic speech recognition (ASR) in noisy and reverberated environments. Building on recent advances in Long Short-Term Memory architectures for ASR, we design a novel front-end for context-sensitive Tandem feature extraction and show how the Connectionist Temporal Classification approach can be used as a BLSTM-based back-end, alternatively to Hidden Markov Models (HMM). We combine context-sensitive BLSTM-based feature generation and speech decoding techniques with source separation by convolutive non-negative matrix factorization. Applying our speaker adapted multi-stream HMM framework that processes MFCC features from NMF-enhanced speech as well as word predictions obtained via BLSTM networks and non-negative sparse classification (NSC), we obtain an average accuracy of 91.86% on the PASCAL CHiME Challenge task at signal-to-noise ratios ranging from -6 to 9 dB. To our knowledge, this is the best result ever reported for the CHiME Challenge task.

OriginalspracheEnglisch
Aufsatznummer532
Seiten (von - bis)780-797
Seitenumfang18
FachzeitschriftComputer Speech and Language
Jahrgang27
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - 1 Mai 2013

Fingerprint

Untersuchen Sie die Forschungsthemen von „Noise robust ASR in reverberated multisource environments applying convolutive NMF and Long Short-Term Memory“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren