Abstract
Object retrieval and classification in point cloud data are challenged by noise, irregular sampling density, and occlusion. To address this issue, we propose a point pair descriptor that is robust to noise and occlusion and achieves high retrieval accuracy. We further show how the proposed descriptor can be used in a four-dimensional (4-D) convolutional neural network for the task of object classification. We propose a novel 4-D convolutional layer that is able to learn class-specific clusters in the descriptor histograms. Finally, we provide experimental validation on three benchmark datasets, which confirms the superiority of the proposed approach.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 8255586 |
Seiten (von - bis) | 865-872 |
Seitenumfang | 8 |
Fachzeitschrift | IEEE Robotics and Automation Letters |
Jahrgang | 3 |
Ausgabenummer | 2 |
DOIs | |
Publikationsstatus | Veröffentlicht - Apr. 2018 |