Noise-Resistant Deep Learning for Object Classification in Three-Dimensional Point Clouds Using a Point Pair Descriptor

Dmytro Bobkov, Sili Chen, Ruiqing Jian, Muhammad Z. Iqbal, Eckehard Steinbach

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

20 Zitate (Scopus)

Abstract

Object retrieval and classification in point cloud data are challenged by noise, irregular sampling density, and occlusion. To address this issue, we propose a point pair descriptor that is robust to noise and occlusion and achieves high retrieval accuracy. We further show how the proposed descriptor can be used in a four-dimensional (4-D) convolutional neural network for the task of object classification. We propose a novel 4-D convolutional layer that is able to learn class-specific clusters in the descriptor histograms. Finally, we provide experimental validation on three benchmark datasets, which confirms the superiority of the proposed approach.

OriginalspracheEnglisch
Aufsatznummer8255586
Seiten (von - bis)865-872
Seitenumfang8
FachzeitschriftIEEE Robotics and Automation Letters
Jahrgang3
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - Apr. 2018

Fingerprint

Untersuchen Sie die Forschungsthemen von „Noise-Resistant Deep Learning for Object Classification in Three-Dimensional Point Clouds Using a Point Pair Descriptor“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren