TY - JOUR
T1 - Nickel, manganese, and cobalt dissolution from Ni-Rich NMC and their effects on NMC622-graphite cells
AU - Jung, Roland
AU - Linsenmann, Fabian
AU - Thomas, Rowena
AU - Wandt, Johannes
AU - Solchenbach, Sophie
AU - Maglia, Filippo
AU - Stinner, Christoph
AU - Tromp, Moniek
AU - Gasteiger, Hubert A.
N1 - Publisher Copyright:
© The Author(s) 2019.
PY - 2019
Y1 - 2019
N2 - Transition metal dissolution from the cathode active material and its deposition on the anode causes significant cell aging, studied most intensively for manganese. Owing to their higher specific energy, the current focus is shifting towards nickel-rich layered LiNixMnyCozO2 (NMC, x + y + z = 1) with x > 0.5, so that the effect of Ni dissolution on cell degradation needs to be understood. This study investigates the dissolution of transition metals from a NMC622 cathode and their subsequent deposition on a graphite anode using operando X-ray absorption spectroscopy. We show that in NMC622-graphite cells transition metals dissolve nearly stoichiometrically at potentials >4.6 V, highlighting the significance of investigating Ni dissolution/deposition. Using NMC622-graphite full-cells with electrolyte containing the bis(trifluoromethane)sulfonimide (TFSI) salts of either Ni, Mn, or Co, we compare the detrimental impact of these metals on cell performance. Using in-situ and ex-situ XRD, we show that the aging mechanism induced by all three metals is the loss of cycleable lithium in the solid electrolyte interface (SEI) of the graphite. This loss is larger in magnitude when Mn is present in the electrolyte compared to Ni and Co, which we ascribe to a higher activity of deposited Mn towards SEI decomposition in comparison to Ni and Co.
AB - Transition metal dissolution from the cathode active material and its deposition on the anode causes significant cell aging, studied most intensively for manganese. Owing to their higher specific energy, the current focus is shifting towards nickel-rich layered LiNixMnyCozO2 (NMC, x + y + z = 1) with x > 0.5, so that the effect of Ni dissolution on cell degradation needs to be understood. This study investigates the dissolution of transition metals from a NMC622 cathode and their subsequent deposition on a graphite anode using operando X-ray absorption spectroscopy. We show that in NMC622-graphite cells transition metals dissolve nearly stoichiometrically at potentials >4.6 V, highlighting the significance of investigating Ni dissolution/deposition. Using NMC622-graphite full-cells with electrolyte containing the bis(trifluoromethane)sulfonimide (TFSI) salts of either Ni, Mn, or Co, we compare the detrimental impact of these metals on cell performance. Using in-situ and ex-situ XRD, we show that the aging mechanism induced by all three metals is the loss of cycleable lithium in the solid electrolyte interface (SEI) of the graphite. This loss is larger in magnitude when Mn is present in the electrolyte compared to Ni and Co, which we ascribe to a higher activity of deposited Mn towards SEI decomposition in comparison to Ni and Co.
UR - http://www.scopus.com/inward/record.url?scp=85066969262&partnerID=8YFLogxK
U2 - 10.1149/2.1151902jes
DO - 10.1149/2.1151902jes
M3 - Article
AN - SCOPUS:85066969262
SN - 0013-4651
VL - 166
SP - A378-A389
JO - Journal of the Electrochemical Society
JF - Journal of the Electrochemical Society
IS - 2
ER -