TY - GEN
T1 - Neural RGB-D Surface Reconstruction
AU - Azinovic, Dejan
AU - Martin-Brualla, Ricardo
AU - Goldman, Dan B.
AU - Niebner, Matthias
AU - Thies, Justus
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Obtaining high-quality 3D reconstructions of room-scale scenes is of paramount importance for upcoming applications in AR or VR. These range from mixed reality applications for teleconferencing, virtual measuring, virtual room planing, to robotic applications. While current volume-based view synthesis methods that use neural radiance fields (NeRFs) show promising results in reproducing the appearance of an object or scene, they do not reconstruct an actual surface. The volumetric representation of the surface based on densities leads to artifacts when a surface is extracted using Marching Cubes, since during optimization, densities are accumulated along the ray and are not used at a single sample point in isolation. Instead of this volumetric representation of the surface, we propose to represent the surface using an implicit function (truncated signed distance function). We show how to incorporate this representation in the NeRF framework, and extend it to use depth measurements from a commodity RGB-D sensor, such as a Kinect. In addition, we propose a pose and camera re-finement technique which improves the overall reconstruction quality. In contrast to concurrent work on integrating depth priors in NeRF which concentrates on novel view synthesis, our approach is able to reconstruct high-quality, metrical 3D reconstructions.
AB - Obtaining high-quality 3D reconstructions of room-scale scenes is of paramount importance for upcoming applications in AR or VR. These range from mixed reality applications for teleconferencing, virtual measuring, virtual room planing, to robotic applications. While current volume-based view synthesis methods that use neural radiance fields (NeRFs) show promising results in reproducing the appearance of an object or scene, they do not reconstruct an actual surface. The volumetric representation of the surface based on densities leads to artifacts when a surface is extracted using Marching Cubes, since during optimization, densities are accumulated along the ray and are not used at a single sample point in isolation. Instead of this volumetric representation of the surface, we propose to represent the surface using an implicit function (truncated signed distance function). We show how to incorporate this representation in the NeRF framework, and extend it to use depth measurements from a commodity RGB-D sensor, such as a Kinect. In addition, we propose a pose and camera re-finement technique which improves the overall reconstruction quality. In contrast to concurrent work on integrating depth priors in NeRF which concentrates on novel view synthesis, our approach is able to reconstruct high-quality, metrical 3D reconstructions.
KW - 3D from multi-view and sensors
KW - 3D from single images
KW - RGBD sensors and analytics
KW - Vision + graphics
UR - http://www.scopus.com/inward/record.url?scp=85130121927&partnerID=8YFLogxK
U2 - 10.1109/CVPR52688.2022.00619
DO - 10.1109/CVPR52688.2022.00619
M3 - Conference contribution
AN - SCOPUS:85130121927
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 6280
EP - 6291
BT - Proceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PB - IEEE Computer Society
T2 - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Y2 - 19 June 2022 through 24 June 2022
ER -