Neural Network Assisted Numerical Simulation Benchmarking for Electric Vehicle Thermal Management System

Ekin Alp Bicer, Pascal Schirmer, Peter Schreivogel, Gabriele Schrag

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Thermal Management System (TMS) in Electric Vehicles (EVs) is tasked with providing optimal thermal conditions for the EV components while keeping the passengers comfortable. An accurate TMS model prevents overengineered components during the early design phase, but high-fidelity models like CFD or FEM become computationally infeasible when simulating the whole system. Neural Networks (NNs) provide accuracy without heavy computational loads, however, their extrapolation capabilities can be limited when predicting coolant temperatures for EVs in the design phase. To solve this, the authors introduce an NN-based TMS simulation approach using analytical equations and dedicated look-up tables. The results show that the proposed approach outperforms the baseline approach only utilizing neural networks up to 11.5% during dynamic driving.

OriginalspracheEnglisch
TitelInternational Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, PCIM Europe 2024
Herausgeber (Verlag)Mesago PCIM GmbH
Seiten40-48
Seitenumfang9
ISBN (elektronisch)9783800762620
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, PCIM Europe 2024 - Nuremberg, Deutschland
Dauer: 11 Juni 202413 Juni 2024

Publikationsreihe

NamePCIM Europe Conference Proceedings
Band2024-June
ISSN (elektronisch)2191-3358

Konferenz

Konferenz2024 International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, PCIM Europe 2024
Land/GebietDeutschland
OrtNuremberg
Zeitraum11/06/2413/06/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Neural Network Assisted Numerical Simulation Benchmarking for Electric Vehicle Thermal Management System“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren