TY - GEN
T1 - Neural net vector quantizers for discrete HMM-based on-line handwritten whiteboard-note recognition
AU - Schenk, Joachim
AU - Rigoll, Gerhard
PY - 2008
Y1 - 2008
N2 - In this work we evaluate a recently published vector quantization scheme, which has been developed to handle binary features like the pressure feature occurring in on-line handwriting recognition using discrete Hidden-Markov-Models (HMMs) with two neural net based vector quantizers (VQs). One of these uses a "Winner-Take-All" (WTA) update rule and the other implements the "Neural Gas" (NG) approach. Both approaches are believed to be more efficient VQs than the standard k-means VQ used in our earlier publication. In an experimental section we prove that both the WTA and NG neural net VQ significantly (significance is measured by the one-sided t-test) outperform our previously used k-means VQ by rW = 0:9% and rN = 0:8%, respectively, referring to word-level accuracy. In addition, no significant difference in recognition accuracy between the WTA-VQ and the NG-VQ could be observed.
AB - In this work we evaluate a recently published vector quantization scheme, which has been developed to handle binary features like the pressure feature occurring in on-line handwriting recognition using discrete Hidden-Markov-Models (HMMs) with two neural net based vector quantizers (VQs). One of these uses a "Winner-Take-All" (WTA) update rule and the other implements the "Neural Gas" (NG) approach. Both approaches are believed to be more efficient VQs than the standard k-means VQ used in our earlier publication. In an experimental section we prove that both the WTA and NG neural net VQ significantly (significance is measured by the one-sided t-test) outperform our previously used k-means VQ by rW = 0:9% and rN = 0:8%, respectively, referring to word-level accuracy. In addition, no significant difference in recognition accuracy between the WTA-VQ and the NG-VQ could be observed.
UR - http://www.scopus.com/inward/record.url?scp=77957964937&partnerID=8YFLogxK
U2 - 10.1109/icpr.2008.4761448
DO - 10.1109/icpr.2008.4761448
M3 - Conference contribution
AN - SCOPUS:77957964937
SN - 9781424421756
T3 - Proceedings - International Conference on Pattern Recognition
BT - 2008 19th International Conference on Pattern Recognition, ICPR 2008
PB - Institute of Electrical and Electronics Engineers Inc.
ER -