Neural Implicit Representations for Physical Parameter Inference from a Single Video

Florian Hofherr, Lukas Koestler, Florian Bernard, Daniel Cremers

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

Neural networks have recently been used to analyze diverse physical systems and to identify the underlying dynamics. While existing methods achieve impressive results, they are limited by their strong demand for training data and their weak generalization abilities to out-of-distribution data. To overcome these limitations, we propose to combine neural implicit representations for appearance modeling with neural ordinary differential equations (ODEs) for modelling planar physical phenomena to obtain a dynamic scene representation that can be identified directly from visual observations. Our proposed model combines several unique advantages: (i) Contrary to existing approaches that require large training datasets, we are able to identify physical parameters from only a single video. (ii) The use of neural implicit representations enables the processing of high-resolution videos and the synthesis of photo-realistic images. (iii) The embedded neural ODE has a known parametric form that allows for the identification of interpretable physical parameters, and (iv) long-term prediction in state space. (v) Furthermore, the photo-realistic rendering of novel scenes with modified physical parameters becomes possible.

OriginalspracheEnglisch
TitelProceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten2092-2102
Seitenumfang11
ISBN (elektronisch)9781665493468
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023 - Waikoloa, USA/Vereinigte Staaten
Dauer: 3 Jan. 20237 Jan. 2023

Publikationsreihe

NameProceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023

Konferenz

Konferenz23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023
Land/GebietUSA/Vereinigte Staaten
OrtWaikoloa
Zeitraum3/01/237/01/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Neural Implicit Representations for Physical Parameter Inference from a Single Video“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren