Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction

Aljaž Božič, Pablo Palafox, Michael Zollhöfer, Justus Thies, Angela Dai, Matthias Nießner

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

53 Zitate (Scopus)

Abstract

We introduce Neural Deformation Graphs for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects. Specifically, we implicitly model a deformation graph via a deep neural network. This neural deformation graph does not rely on any object-specific structure and, thus, can be applied to general non-rigid deformation tracking. Our method globally optimizes this neural graph on a given sequence of depth camera observations of a non-rigidly moving object. Based on explicit viewpoint consistency as well as inter-frame graph and surface consistency constraints, the underlying network is trained in a self-supervised fashion. We additionally optimize for the geometry of the object with an implicit deformable multi-MLP shape representation. Our approach does not assume sequential input data, thus enabling robust tracking of fast motions or even temporally disconnected recordings. Our experiments demonstrate that our Neural Deformation Graphs outperform state-of-the-art non-rigid reconstruction approaches both qualitatively and quantitatively, with 64% improved reconstruction and 54% improved deformation tracking performance. Code is publicly available.

OriginalspracheEnglisch
TitelProceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
Herausgeber (Verlag)IEEE Computer Society
Seiten1450-1459
Seitenumfang10
ISBN (elektronisch)9781665445092
DOIs
PublikationsstatusVeröffentlicht - 2021
Veranstaltung2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 - Virtual, Online, USA/Vereinigte Staaten
Dauer: 19 Juni 202125 Juni 2021

Publikationsreihe

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Konferenz

Konferenz2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
Land/GebietUSA/Vereinigte Staaten
OrtVirtual, Online
Zeitraum19/06/2125/06/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren