Network analysis methods for studying microbial communities: A mini review

Monica Steffi Matchado, Michael Lauber, Sandra Reitmeier, Tim Kacprowski, Jan Baumbach, Dirk Haller, Markus List

Publikation: Beitrag in FachzeitschriftÜbersichtsartikelBegutachtung

133 Zitate (Scopus)

Abstract

Microorganisms including bacteria, fungi, viruses, protists and archaea live as communities in complex and contiguous environments. They engage in numerous inter- and intra- kingdom interactions which can be inferred from microbiome profiling data. In particular, network-based approaches have proven helpful in deciphering complex microbial interaction patterns. Here we give an overview of state-of-the-art methods to infer intra-kingdom interactions ranging from simple correlation- to complex conditional dependence-based methods. We highlight common biases encountered in microbial profiles and discuss mitigation strategies employed by different tools and their trade-off with increased computational complexity. Finally, we discuss current limitations that motivate further method development to infer inter-kingdom interactions and to robustly and comprehensively characterize microbial environments in the future.

OriginalspracheEnglisch
Seiten (von - bis)2687-2698
Seitenumfang12
FachzeitschriftComputational and Structural Biotechnology Journal
Jahrgang19
DOIs
PublikationsstatusVeröffentlicht - Jan. 2021

Fingerprint

Untersuchen Sie die Forschungsthemen von „Network analysis methods for studying microbial communities: A mini review“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren