NetKet: A machine learning toolkit for many-body quantum systems

Giuseppe Carleo, Kenny Choo, Damian Hofmann, James E.T. Smith, Tom Westerhout, Fabien Alet, Emily J. Davis, Stavros Efthymiou, Ivan Glasser, Sheng Hsuan Lin, Marta Mauri, Guglielmo Mazzola, Christian B. Mendl, Evert van Nieuwenburg, Ossian O'Reilly, Hugo Théveniaut, Giacomo Torlai, Filippo Vicentini, Alexander Wietek

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

71 Zitate (Scopus)

Abstract

We introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques. The framework is built around a general and flexible implementation of neural-network quantum states, which are used as a variational ansatz for quantum wavefunctions. NetKet provides algorithms for several key tasks in quantum many-body physics and quantum technology, namely quantum state tomography, supervised learning from wavefunction data, and ground state searches for a wide range of customizable lattice models. Our aim is to provide a common platform for open research and to stimulate the collaborative development of computational methods at the interface of machine learning and many-body physics.

OriginalspracheEnglisch
Aufsatznummer100311
FachzeitschriftSoftwareX
Jahrgang10
DOIs
PublikationsstatusVeröffentlicht - 1 Juli 2019
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „NetKet: A machine learning toolkit for many-body quantum systems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren