NeRF-VO: Real-Time Sparse Visual Odometry With Neural Radiance Fields

Jens Naumann, Binbin Xu, Stefan Leutenegger, Xingxing Zuo

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

We introduce a novel monocular visual odometry (VO) system, NeRF-VO, that integrates learning-based sparse visual odometry for low-latency camera tracking and a neural radiance scene representation for fine-detailed dense reconstruction and novel view synthesis. Our system initializes camera poses using sparse visual odometry and obtains view-dependent dense geometry priors from a monocular prediction network. We harmonize the scale of poses and dense geometry, treating them as supervisory cues to train a neural implicit scene representation. NeRF-VO demonstrates exceptional performance in both photometric and geometric fidelity of the scene representation by jointly optimizing a sliding window of keyframed poses and the underlying dense geometry, which is accomplished through training the radiance field with volume rendering. We surpass SOTA methods in pose estimation accuracy, novel view synthesis fidelity, and dense reconstruction quality across a variety of synthetic and real-world datasets while achieving a higher camera tracking frequency and consuming less GPU memory.

OriginalspracheEnglisch
Seiten (von - bis)7278-7285
Seitenumfang8
FachzeitschriftIEEE Robotics and Automation Letters
Jahrgang9
Ausgabenummer8
DOIs
PublikationsstatusVeröffentlicht - 2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „NeRF-VO: Real-Time Sparse Visual Odometry With Neural Radiance Fields“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren