Neos: End-to-End-Optimised Summary Statistics for High Energy Physics

Nathan Simpson, Lukas Heinrich

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

6 Zitate (Scopus)

Abstract

The advent of deep learning has yielded powerful tools to automatically compute gradients of computations. This is because training a neural network equates to iteratively updating its parameters using gradient descent to find the minimum of a loss function. Deep learning is then a subset of a broader paradigm; a workflow with free parameters that is end-to-end optimisable, provided one can keep track of the gradients all the way through. This work introduces neos: an example implementation following this paradigm of a fully differentiable high-energy physics workflow, capable of optimising a learnable summary statistic with respect to the expected sensitivity of an analysis. Doing this results in an optimisation process that is aware of the modelling and treatment of systematic uncertainties.

OriginalspracheEnglisch
Aufsatznummer012105
FachzeitschriftJournal of Physics: Conference Series
Jahrgang2438
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung20th International Workshop on Advanced Computing and Analysis Techniques in Physics Research, ACAT 2021 - Daejeon, Virtual, Südkorea
Dauer: 29 Nov. 20213 Dez. 2021

Fingerprint

Untersuchen Sie die Forschungsthemen von „Neos: End-to-End-Optimised Summary Statistics for High Energy Physics“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren