Neighborhood selection for thresholding-based subspace clustering

Reinhard Heckel, Eirikur Agustsson, Helmut Bölcskei

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

7 Zitate (Scopus)

Abstract

Subspace clustering refers to the problem of clustering high-dimensional data points into a union of low-dimensional linear subspaces, where the number of subspaces, their dimensions and orientations are all unknown. In this paper, we propose a variation of the recently introduced thresholding-based subspace clustering (TSC) algorithm, which applies spectral clustering to an adjacency matrix constructed from the nearest neighbors of each data point with respect to the spherical distance measure. The new element resides in an individual and data-driven choice of the number of nearest neighbors. Previous performance results for TSC, as well as for other subspace clustering algorithms based on spectral clustering, come in terms of an intermediate performance measure, which does not address the clustering error directly. Our main analytical contribution is a performance analysis of the modified TSC algorithm (as well as the original TSC algorithm) in terms of the clustering error directly.

OriginalspracheEnglisch
Titel2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten6761-6765
Seitenumfang5
ISBN (Print)9781479928927
DOIs
PublikationsstatusVeröffentlicht - 2014
Extern publiziertJa
Veranstaltung2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014 - Florence, Italien
Dauer: 4 Mai 20149 Mai 2014

Publikationsreihe

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Konferenz

Konferenz2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
Land/GebietItalien
OrtFlorence
Zeitraum4/05/149/05/14

Fingerprint

Untersuchen Sie die Forschungsthemen von „Neighborhood selection for thresholding-based subspace clustering“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren