NATURAL POSTERIOR NETWORK: DEEP BAYESIAN UNCERTAINTY FOR EXPONENTIAL FAMILY DISTRIBUTIONS

Bertrand Charpentier, Oliver Borchert, Daniel Zügner, Simon Geisler, Stephan Günnemann

Publikation: KonferenzbeitragPapierBegutachtung

15 Zitate (Scopus)

Abstract

Uncertainty awareness is crucial to develop reliable machine learning models. In this work, we propose the Natural Posterior Network (NatPN) for fast and high-quality uncertainty estimation for any task where the target distribution belongs to the exponential family. Thus, NatPN finds application for both classification and general regression settings. Unlike many previous approaches, NatPN does not require out-of-distribution (OOD) data at training time. Instead, it leverages Normalizing Flows to fit a single density on a learned low-dimensional and task-dependent latent space. For any input sample, NatPN uses the predicted likelihood to perform a Bayesian update over the target distribution. Theoretically, NatPN assigns high uncertainty far away from training data. Empirically, our extensive experiments on calibration and OOD detection show that NatPN delivers highly competitive performance for classification, regression and count prediction tasks.

OriginalspracheEnglisch
PublikationsstatusVeröffentlicht - 2022
Veranstaltung10th International Conference on Learning Representations, ICLR 2022 - Virtual, Online
Dauer: 25 Apr. 202229 Apr. 2022

Konferenz

Konferenz10th International Conference on Learning Representations, ICLR 2022
OrtVirtual, Online
Zeitraum25/04/2229/04/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „NATURAL POSTERIOR NETWORK: DEEP BAYESIAN UNCERTAINTY FOR EXPONENTIAL FAMILY DISTRIBUTIONS“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren