TY - GEN
T1 - Nanoparticle precipitation in a T-mixer
T2 - 2006 2nd ASME Joint U.S.-European Fluids Engineering Summer Meeting, FEDSM 2006
AU - Gradl, Johannes
AU - Schwertfirm, Florian
AU - Schwarzer, Hans Christoph
AU - Schmid, Hans Joachim
AU - Manhart, Michael
AU - Peukert, Wolfgang
PY - 2006
Y1 - 2006
N2 - Mixing and consequently fluid dynamic is a key parameter to tailor the particle size distribution (PSD) in nanoparticle precipitation. Due to fast and intensive mixing a static T-mixer configuration is capable for synthesizing continuously nanoparticles. The flow and concentration field of the applied mixer is investigated experimentally at different flow rates by Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF). Due to the PIV measurements the flow field in the mixer was characterized qualitatively and the mixing process itself is quantified by the subsequent LIF-measurements. A special feature of the LIF set up is to detect structures in the flow field, which are smaller than the Batchelor length. Thereby a detailed insight into the mixing process in a static T-Mixer is given. In this study a CFD-based approach using Direct Numerical Simulation (DNS) in combination with the solid formation kinetics solving population balance equations (PBE) is applied, using barium sulfate as modeling material. A Lagrangian Particle Tracking strategy is used to couple the flow field information with a micro mixing model and with the classical theory of nucleation. We found that the DNS-PBE approach including macro and micro mixing, combined with the population balance is capable of predicting the full PSD in nanoparticle precipitation for different operating parameters. Additionally to the resulting PSD, this approach delivers a 3D-information about all running subprocesses in the mixer, i.e. supersaturation built-up or nucleation, which is visualized for different process variables.
AB - Mixing and consequently fluid dynamic is a key parameter to tailor the particle size distribution (PSD) in nanoparticle precipitation. Due to fast and intensive mixing a static T-mixer configuration is capable for synthesizing continuously nanoparticles. The flow and concentration field of the applied mixer is investigated experimentally at different flow rates by Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF). Due to the PIV measurements the flow field in the mixer was characterized qualitatively and the mixing process itself is quantified by the subsequent LIF-measurements. A special feature of the LIF set up is to detect structures in the flow field, which are smaller than the Batchelor length. Thereby a detailed insight into the mixing process in a static T-Mixer is given. In this study a CFD-based approach using Direct Numerical Simulation (DNS) in combination with the solid formation kinetics solving population balance equations (PBE) is applied, using barium sulfate as modeling material. A Lagrangian Particle Tracking strategy is used to couple the flow field information with a micro mixing model and with the classical theory of nucleation. We found that the DNS-PBE approach including macro and micro mixing, combined with the population balance is capable of predicting the full PSD in nanoparticle precipitation for different operating parameters. Additionally to the resulting PSD, this approach delivers a 3D-information about all running subprocesses in the mixer, i.e. supersaturation built-up or nucleation, which is visualized for different process variables.
UR - http://www.scopus.com/inward/record.url?scp=33845784748&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:33845784748
SN - 0791837831
SN - 9780791837832
T3 - 2006 ASME Joint U.S.-European Fluids Engineering Summer Meeting, FEDSM 2006
BT - 2006 ASME Joint U.S.-European Fluids Engineering Summer Meeting, FEDSM 2006
Y2 - 17 July 2006 through 20 July 2006
ER -